
Mobile Application Programming: iOS
CS4530 Spring 2017

Project 3 - MVC Battleship
Due: 11:59PM Monday, March 20th

Abstract

Build a Model-View-Controller implementation of the game Battleship on iOS in Swift.
The application will host a list of games that are in progress or have finished, as well as a user
interface to play a game.

The game itself involves two grids positioned over locations in the ocean. Each grid
contains 5 ships that can be positioned in a row or column of the grid and have lengths of 2, 3,
3, 4, and 5 units. Each player may only see the ships that are in their own grid. Players take
turns launching missiles into individual grid locations with the goal of sinking the opponent’s
ships. When a missile is launched, the player is told wether the missile “hit” or “missed”. The
game also says on a “hit” if the ship was “sunk”, meaning that all of the locations the ship
occupies have been hit. The game is won when all locations that the enemy’s ships cover have
been “hit”. See http://en.wikipedia.org/wiki/Battleship_(game)#Description for more information.

The game will function in a hot-seat style of play such that when a player has taken their
turn they will hand the device to their opponent to take the next turn. A view controller who's
content says “Give the device to your enemy.” should cover the screen when the user has taken
their turn. This allows the user to give the device to the other player without showing their own
ships.

Components

• Data model object containing a list of game objects
• Offers an interface allowing access, addition, removal, and updating (playing) of games
• Persistence of the game states is required. E.g. the list of games should be saved at

appropriate times while playing and should be reloaded on app start. Save the file in the
Documents directory in the sandbox area for your app (code below to get the path).

• Game objects implementing the logic of the game should make up the bulk of the model
code:

• Contains the state information for the current player’s turn, position of ships in the two
grids, and locations that missiles have been launched for each player.

• Offers a method to launch a missile from the current player to a location on the grid.
• Based on the game state information, the current game phase can be obtained (e.g.

starting, in-progress, player 1 won, player 2 won).
• The classic game allows the user to place their own ships on the grid before the game

begins. To simplify the UI requirements of the assignment, instead write code that
creates random, but valid, ship configurations for each player when the game begins.
E.g. ships have the possibility of being placed in both columns and rows, and should
not overlap or fall off the end of the grid.

• Views that offer access into the model. These should be well implemented and function
perfectly, but do not need to be very visually appealing. The screens involved are:

• Game List Screen: A screen containing a table view that lists games that are in-progress
or ended, and that opens a game when its row is tapped. The row should note if the game
is in progress or if it has ended, who’s turn it is in that game (or has ended), and how

http://en.wikipedia.org/wiki/Battleship_(game)#Description

many ships remain un-sunk for each player. Games can be started from this screen by
pressing a “new game” button.

• Game Screen: A screen showing a grid that contains the locations of the player’s ships
and the locations their opponent has launched missiles against them. The screen also
needs to show another grid representing the player’s opponent and that lets them launch
missiles by tapping a grid cell. This grid should show where they have launched missiles
previously, including “hit”, “missed”, and “sunk” information. The screen should not show
where the opponent’s ships are, for reasons that are hopefully obvious.

• Views should be organized by being added to view controller objects:
• When views require information to draw the UI, the view controller should query the model

for that information when requested to do so. When the user taps a grid cell, the view
controller should ask the model to perform the “launch missile” action (using a delegation
pattern or target-action mechanism), rather than the view doing this. Following the MVC
pattern, the model and view should be oblivious of one another.

• When validating if the launch missile action is allowed, the model should respond to the
controller either by returning information from a “launch missile” method call, or by a
delegate call saying “missile launched at location X/Y and was a hit/miss”. It should
indicate “game won” information in a similar way.

• Extra Credit
• 10%: Implement the UI allowing users to place their own ships before the game begins
• 10%: Create an AI player that plays against the user instead of the “hot seat”

configuration. The AI must be smarter than just choosing random locations! Consider
creating a grid of numbers representing the “goodness” of a particular location based on
those around it. Then have the AI choose the location with the highest “goodness”.

Handin

You should hand in a zip file containing your project. To do this, zip the folder by right-clicking it
and selecting “Compress”, then handing it in using the handin command line tool. Hand this zip
into:

handin cs4530 project3 your_zip_file.zip

